River Assessment and Monitoring NCTC - Shepherdstown, WV 9/17 – 9/27/2007 Team 1 Day 3 Magruder Branch Degraded Reach #### Longitudinal Profile Notes - Tape was placed along the right low flow channel bank. - o Tape was placed up and over large tree near approx. station 50 - o Tape was placed under the exposed roots of the tree upstream of the riffle cross section (shown on geomorphic sketch). - Utilized three (3) turning points - o First turn was made off of an entrained rock downstream of the riffle cross section - Second turn was made off of the left monument station of the glide cross section ۶, Elevation (ft) , . • # **Active Channel** **Percent Finer** #### Percent Finer ## Percent Finer Bar #### Percent Finer Percent Finer **Percent Finer** Worksheet 5-3. Field form for Level II stream classification (Rosgen, 1996; Rosgen and Silvey, 2005). | Stream: | Macgruder Day 3, Reach - Reach 1 | | | |------------|--|--------------|------------------| | Basin: | Drainage Area: 704 acres | 1.1 | mi ² | | Location: | | | | | Twp.&Rge: | ; Sec.&Qtr.: ; | | | | Cross-Sect | ion Monuments (Lat./Long.): 0 Lat / 0 Long | Date | 9/26/200 | | Observers: | | Valley Type: | | | 5 | Bankfull WIDTH (W _{bkf}) | | 1 | | | WIDTH of the stream channel at bankfull stage elevation, in a riffle section. | 23.62 | ft | | | Bankfull DEPTH (d_{bkf}) Mean DEPTH of the stream channel cross-section, at bankfull stage elevation, in a riffle section ($d_{bkf} = A / W_{bkf}$). | 1.18 | ft | | | Bankfull X-Section AREA (A _{bkf}) AREA of the stream channel cross-section, at bankfull stage elevation, in a riffle section. | 22.22 | | | | Width/Depth Ratio (W _{bkf} / d _{bkf}) | 27.77 |]ft ² | | | Bankfull WIDTH divided by bankfull mean DEPTH, in a riffle section. Maximum DEPTH (d _{mbkf}) | 20.02 |]ft/ft
] | | | Maximum depth of the bankfull channel cross-section, or distance between the bankfull stage and Thaiweg elevations, in a riffle section. | 1.87 | ft | | 5 | WIDTH of Flood-Prone Area (W _{fpa}) Twice maximum DEPTH, or $(2 \times d_{mbkl}) = the stage/elevation at which flood-prone area WIDTH is determined in a riffle section.$ | 170.82 | ft | | | Entrenchment Ratio (ER) The ratio of flood-prone area WIDTH divided by bankfull channel WIDTH (W _{fpa} / W _{bkl}) (riffle section). | 7.23 | ft/ft | | | Channel Materials (Particle Size Index) D_{50}
The D_{50} particle size index represents the mean diameter of channel materials, as sampled from the channel surface, between the bankfull stage and Thalweg elevations. | 21.58 | mm | | 3 | Water Surface SLOPE (S) Channel slope = "rise over run" for a reach approximately 20–30 bankfull channel widths in length, with the "riffle-to-riffle" water surface slope representing the gradient at bankfull stage. | 0.00645 | ft/ft | | 8 | Channel SINUOSITY (k) Sinuosity is an index of channel pattern, determined from a ratio of stream length divided by valley length (SL / VL); or estimated from a ratio of valley slope divided by channel slope (VS / S). | 1.5 | | | | Stream Type C 4 (See Figure 2- | -14) | | Worksheet 5-4. Morphological relations, including dimensionless ratios of river reach sites (Rosgen and Silvey, 2005). | Ob | servers: | | | | Date: | 9/26/2 | 007 | | Valle | y Type: | VIII | | Stream | n Type: | C 4 | | |-------------------|---------------------------------------|--------------|--------------|---|-------------------|---------------------|--------------------------|-----------------|--------------|---|----------------------------|---------------------|------------------------------|------------|-------------|-----------------------------------| | | | | | | Rive | er Rea | ch Sumi | mary D | ata | | | | | | | | | | Mean Riffle Depth (dык) | i | 1.19 | ft | Riffle V | Vidth (V | V _{bkf}) | 23. | 61 | ft | Riffle A | | | 28.0 | 0,1 | ft ² | | E | Mean Pool Depth (dake) | (E | 1,61 | R | Pool W | ridth (W | house) | 15. | 14 | ft | Pool Ar | rea (A _b | _{(Tp}) | 24.4 | 44 | n². | | Channel Dimension | Mean Pool Depth/Mear
Depth | Riffle | 1.35 | d _{bkfp} /
d _{bkf} | Pool W | /idth/Ri | ffle Width | | 0.64 | W _{bkfp} /
W _{bkf} | Pool A | rea / Ri | ffle Area | 0.8 | 7 | A _{bkfp} /A _b | | | Max Riffle Depth (d _{mbkf}) | | 1.4 | ft | Max Po | ool Dep | th (d _{mbkfp}) | | 3.88 | ft | Max Ri | ffle De | oth/Mean R | iffle Dept | th | 1.18 | | anne | Max Pool Depth/Mean | Riffle D | epth | 3.261 | | | | | | | Point B | ar Slop | e e | | | 21 | | ਹੈ | Streamflow, Estimated | Mean V | /elocity | at Ban | kfull Sta | ige (иы | d) | 3.2 | 25 | ft/s | Estima | tion Me | ethod | M | annir | ngs | | | Streamflow: Estimated | Dischar | rge at I | Bankfull | Stage (| (Q _{bkf}) | | 91. | 03 | cfs | Draina | ge Area | | 1.1 | 1 | mi ² | | | | | | | | | | Dime | nelon | loon Co | om eter | Pation | | Mean | Min | Max | | - | Geometry Meander Length (Lm) | | Mean
106 | Min
85 | 127 | ft | Meander | | | THE RESERVE TO SERVE THE PARTY OF | ometry
_{bkf}) | Tutto: | | - | 3.60 | 5.38 | | ٤ | Radius of Curvature (R | c) | 25 | 21 | | ft | Radius o | f Curva | ture/R | iffle Wid | Ith (Rc∧ | N _{bkf}) | | 1.06 | 0.89 | 1.65 | | Pattern | Belt Width (W _{bit}) | | 35 | 30 | | ft | Meander | Width | Ratio i | (W _{PH} WF | okt) | | | 1.48 | 1.27 | 1.74 | | nel P | Individual Pool Length | | 39.5 | 34.1 | | ft | Pool Len | gth/Riff | le Wid | th | | | | 1.67 | 1.44 | 1.90 | | Chan | Pool to Pool Spacing | | 58.8 | 46.5 | 78.9 | - | Pool to F | _ | _ | _ | dth | | | 2.49 | 1.97 | 3.34 | | ပ | Riffle Length | | 8.67 | - | 12.2 | | Riffle Ler | | _ | | | _ | | 0.37 | | 0.52 | | - | g. and congui | | 0.01 | | | | | | | | | | | | | | | 3 | Valley Slope (VS) | 0.0 | 109 | ft/ft | Averag | ge Wate | er Surface | Siope | (S) | 0.0 | 0645 | ft/ft | Sinuosity | | | 1.34 | | | Stream Length (SL) | 24 | 13 | ft | Valley | Length | (VL) | | | 1 | 66 | rt | Sinuosity | (SL/VL) | | 1.464 | | | Low Bank Height (LBH) | start
end | 1.61
1.68 | - | | Max Ri
Deptl | | | 1.19
1.47 | | | - | ght Ratio (B
x Riffle Dep | | star
end | 1.353
1.14 | | | Facet Slopes | Mean | Min | Max | | | | | | | pe Ratio | | | Mean | Min | Max | | į. | Riffle Slope (S _{rif}) | | | 0.049 | | - | Slope/Ave | _ | | | | | | A INC | | 7 541 | | Profil | Run Slope (S _{run}) | 0.064 | 0.051 | 0.075 | ft/ft | Run S | lope/Aver | age Wa | iter Su | ırface S | lope (S, | un/S) | | | | 11.61 | | Channel | Pool Slope (S _p) | 0.001 | 0.000 | 0.002 | ft/ft | Pool S | Slope/Ave | rage W | ater Si | urface S | lope (S | _p /S) | | | | 0.248 | | Cha | Glide Slope (S _g) | 0.001 | 0.000 | 0.001 | ft/ft | Glide | Slope/Ave | erage V | /ater S | urface S | Slope (S | S _g /S) | | 0.078 | BARRY III | 0.153 | | | Feature Midpoint * | Mean | Min | Max | 1. | lo:m | D | | | | th Rati | 09 | | Mean | Min | Max | | | Riffle Depth (d _{rif}) | 1.4 | | 1.55 | _ | | Depth/Me | PR 160 | | | | - | | 1.18 | 0.99 | | | | Run Depth (d _{run}) | | | 1.71 | | | epth/Mea | | | | | _ | | 1.36 | | | | | Pool Depth (d _p) | | 3.67 | | | 1 | Depth/Mea | | | | | | | 3.26 | | _ | | _ | Glide Depth (dg) | 1.69 | 1.52 | 1.79 | [ft | [Glide | Depth/Me | an Riffl | e Dep | tn (d _g /d | l _{bkf}) | | | 1.42 | 1.28 | 1.504 | | | | Rea | ach | R | ffle ^c | | Bar | | | ach ⁰ | Ri | ffle | Bar | | | Height" | | | % Silt/Clay | | 5 | | 2.8 | | 0 | D ₁₆ | |).73 | 4 | .15 | 4.57 | ļ (|) | mm | | rials | % Sand | 1 | 18 | 3 | .74 | | 0 | D ₃₅ | 1 | 2.24 | 10 | .45 | 7.85 | |) | mm | | | % Gravel | 6 | 31 | 8 | 7.85 | 9 | 1.18 | D ₅₀ | 2 | 1.58 | 18 | 3.02 | 13.77 | |) | mm | | Mate | day a sur | 9 | | = | 5.61 | 8 |
.82 | D ₈₄ | | 64 | 40 | 0.32 | 48.02 | | 0 | mm | | nel Mate | % Cobble | 11 | 16 | | | 1 | | -04 | | | 1 | | | | _ | | | Channel Materials | % Cobble
% Boulder | | 0 | | 0 | | 0 | D ₉₅ | - | 2.67 | - | 5.83 | 66.63 | 1 (| 0 | mm | a Min, max, mean depths are the average mid-point values except pools, which are taken at deepest part of pool. b Composite sample of riffles and pools within the designated reach. c Active bed of a riffle. d Height of roughness feature above bed. ,0059 River Assessment and Monitoring: Impaired Reach 3rd Field Day Worksheet C-3. Bankfull velocity and discharge estimates: | | Bar | kfull VEL | OCITY / | DISCHA | RGE Estir | nates | | | Ĭ | |---|--|--|--|--|--|---|--------------------------------|----------------------------|----------| | Site | | | | Location | | | | | ligi 🔻 | | Date | Stream | Туре | C4 | Valley T | уре | VIII | | | | | Observers | | | | HUC | <u> </u> | | - | | _ | | INI | PUT VARIA | ABLES | | | OUTPU | T VARI | ABLES | | | | Bankfull Cross-s | section AREA | 22 | A _{bkf}
(SqFt) | Bankf | ull Mean Di | ЕРТН | 1.0 | D _{bkf} .
(Ft) | 1,5 | | . Bankfull \ | | 23.3 | W _{bkf} (Ft) | Wett | ed PERIME
* dbur + Wbur | TER | 49.46 | W _{Pbkf} (Ft) | 70.8 | | D84 @ | Riffle CHAPPING | 77.05 | Dia.
(mm) | D84 | 4 mm / 304.8 | } = ' | .2527 | D84 (Fi) | | | Bankfull | SLOPE | ,006 | S
(Ft / Ft) | Hyd | raulic RADI
Abbr/Wpbbr | US. | 0.9 | R
(Ft) | .5 | | Gravitational A | Acceleration | 32.2 | g
(Ft /Sec ²) | | ative Rough
R (ft) / D84 (ft) | | 3.5 | | 1.98 | | Drainage | AREA | 1.0 | DA
(SqMi) | S | hear Velocit
u+ =√gRS | y
 | 0.42 | u*
(Ft / Sec) | .312 | | | ESTIMATION | N METHO | DS | | Bankfull V | ELOCITY | Bank
DISCH | | 2.48 | | 1. Friction Rela
Factor Roug | tive u = [2.
hness | 83 + 5.66Lo | g{ R / D84 | }]ù* | 2.48 | Ft / Sec | 54,56 | CFS | 4/4 - 42 | | 2. Roughness Coeffi
roughness. u = 1.48 | | | = 6045 | ·062 | 2,37 | Ft / Sec | 35,4
52.15 | CFS | M. H | | 2. Roughness Coeff
b) Manning's 'n' fi
Note: This equation is for | rom Jarrett (USG | S): n = 0.39S | 95* R ^{2/3} *S ^{1/2}
³⁸ R ¹⁶ n
boundary roug | - 048 | | Ft / Sec | | CFS | | | boulder-dominated stream | n systems; i.e., for stream | | | | | in A series | | | | | | rom Stream Type | n = [| 895* R ²⁵ *S¹
. <mark>ዕ</mark> ዛያ | | 2.22 | Ft / Sec | 48.89 | CFS | | | 3. Other Methods, le. l | lydraulic Geometry | (Hey, Darcy-W | eisbach, Chez | y C, etc.) | | Ft / Sec | | CFS | | | 3. Other Methods, ie. l | Hydraulic Geometry | (Hey, Darcy-W | eisbach, Chez | y C, etc.) | 2,13 | Ft / Sec | 46,9 | CFS | | | 4. Continuity Equa
Return Per | tions: a) Regional Region at the control of con | onal Curves
charge Q = | u = O/A | @35
22 | 2.54
4.13 | Ft / Sec | 93.47 | CFS | | | 4. Continuity Equat | ions: b) USG: | S Gage Data | u=Q/A | | <i>Y</i> | Ft / Sec | | CFS | | | Option 1. For sand
an avera
Option 2. For bould | ge sand dune protru | asure the " pro t
sion height (h _{se}
nnels: measure | trusion heigh
in feet) for t
several "pro | at" (h _{sd}) of sar
he D84 term i
otrusion heigl | nd dunes above
in estimation m
hts" (h _{bo}) of bo | channel bed
ethod 1.
ulders above | elevations. Sul
channel bed | ostitute | | | Option 3. For bedro
surfaces a | | nnels: measure | several "pro | trusion heigh | nts" (h _{bx}) of roo | k separations | /steps/joints/ u | | | 6.20 35.8 23.4 16.7 WARSSS page 5-108 Date 09/18/07 (Eug) 0.00 0.03 0.01 0.07 0.01 peoued ans sand transport (tons) 000 6.02 0.03 800 0.01 a edjusted bedloed transport [[13]×[14] t (Eucz) 0.05 0.0 0.0 0.00 8 0.01 0.02 0,03 0.02 0.00 8 000 Gage Station #: 01591000 (presida) 1.68 1% 1.83 7.80 5.60 Total annual sediment yield (bedoad and s is pended sand bed-material load) (tons/yt): 0.00 8.0 0.00 0.10 0.20 0.30 0.00 0.08 0.80 3. 2.30 9.0 (days) (busklay) Time Dally increment mean besided 0.00 040 0.90 8 4.80 0.00 0.00 0.0 0.00 0.00 0.00 0.00 1.70 3,00 Calculate 18.25 36.50 36.50 36.50 36.50 36.50 36,50 36.50 36.50 36,50 3.65 **3** (43) 3,65 3.65 30 *6% 8 20% Š 10% 10% 10% 10% Ē , E <u>*</u> ž 3 è Valley Type: VIII 表が対象 90.0 4 0.13 0.16 0,19 0.34 0,45 0.75 **\$**28 6.22 9.6 0.84 1.02 0.27 26.75 10.08 12,47 17.48 23.67 前庭 2.10 14,21 1.28 88 器が 4.20 5.37 7.23 45.0 2.69 Location Reach 3 (fort) 0.42 0.18 0.26 0,29 0.38 0.06 0.09 0.10 0.1 0.13 0.14 0.16 0.24 0.31 4.4 3 Steam Type: 0.006 0.006 0.006 0.006 000 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.006 0.006 0.01 (8) 3.26 Ŕ 0.93 1.27 1.69 1.86 2.08 2.35 2.54 2.66 3.07 ** 1.47 Ţ. 2,87 8 Magruder Branch Reference Reach, Reach 3, ref m Hydraufic geometry 0.25 0.30 0.42 0.49 0.58 0.70 0.78 0.95 *** 1.37 ... 0.17 0.27 0.84 6.34 0.38 15.95 11.73 15.84 16.09 16.45 16.72 17.19 12.77 13.44 14.28 15.16 5.66 16.90 16.99 8 æ 6 Wich 21,89 11.44 13.10 14.25 16.27 18.82 2.88 3,5 5.72 £ 1 4.07 8 (#) Catoulate 71.44 14,33 68.30 26.93 33.34 37.96 46.68 57.89 43 3.43 7,18 \$ 1.24 (00) 5.60 4,5 9.04 (2) Deily mean 35,46 12.47 22.45 34,45 40.76 52.60 63.47 Flow duration curve 0.07 2.80 4.0.6 4.97 6.23 8.42 9.35 (90) Team 3 (1) Percentage of 80.0% 70.0% 60.0% 50.0% 40.0% 30.0% 10.0% 40% 10% Observers 5.0% 3.0% 2.0% 1.5% 2 Worksheet 5-12a. Bedload and suspended sand bed-material load transport prediction for the upstream reach, using the POWERSED model Copyright @ 2006 Wildland Hydrology WARSSS page 5-109 Worksheet 5-12b. Bedload and suspended sand bed-material load transport prediction for the potentially impaired reach, using the POWERSED model. | Characteries Topin A | Stream | Day 3 - Impaired Reach, Reach 1, Riffle 1+36, (R. | ired Reach | Reach 1 | , Riffle 1+ | 36, Riffe | | Location | Location: Reach 3 | | | | | | | | Pa
Tri | 09/18/07 |
---|-----------------------|---|-------------------------------------|----------|-------------|-----------|----------|----------|-------------------|------------|------------|--------------|-----------------------------|-----------------------------|--|---|-----------|---| | The part of | Observers: | Team3 | 700 70 00 000 | 525.575 | | | ŝ | - 1 | 3 | \$ | alley Type | 5 | 8 | Station # | 01581000 | | | | | 17. | Flow-dur. | ation curve | Calculate | | Hydraufic | geometry | | Measure | | | | | 3 | loulate | | | | | | Columbia | (1) | (2) | (3) | 44 | (5) | (9) | (2) | 8 | (6) | (10) | (11) | (12) | (13) | (14) | (15) | (91.) | (17) | (48) | | 9. (6.8) (6.8) (6.9) (6.9) (7.9) (7.9) (8.9) (6.9) (7.9) (7.9) (8.9) (6.9) (7.9) | Percentage of
time | | Mis-
ordinate
stream-
flow | | *** | Dept | Velocity | | 394s | awo. | 15 d | | | | Delly mean
suspended
send
fars port | adjusted
bedbad
besport
transport
((13) #14)) | | Tone
edjusted
total
transport
[[16]+[17]] | | 0.0% 0.0 <th>20</th> <th>(\$0)</th> <th>(\$p)</th> <th>(F)</th> <th>•</th> <th>9</th> <th>(SA)</th> <th>(ta)</th> <th>(fr,tj)</th> <th>(\$PQ)</th> <th>(EV.EE)</th> <th>8</th> <th>(\$(ap)</th> <th>(foreign)</th> <th>(/ep/suci)</th> <th>(ters)</th> <th>(Suca)</th> <th>(sug)</th> | 20 | (\$0) | (\$p) | (F) | • | 9 | (SA) | (ta) | (fr,tj) | (\$PQ) | (EV.EE) | 8 | (\$(ap) | (foreign) | (/ep/suci) | (ters) | (Suca) | (sug) | | 0.00 <th< td=""><td>100.0%</td><td>20'0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>86</td><td></td><td></td><td></td><td></td><td></td><td></td></th<> | 100.0% | 20'0 | | | | | | | | | | 86 | | | | | | | | 0% 4.48 3.44 2.87 14.72 0.00 0.00 0.14 14% 38.50 0.00 | \$0.0% | 2,78 | 1.42 | 1,37 | 8.35 | 0.16 | 86.0 | 90000 | 90.0 | 0.53 | 90'0 | 40% | 36,50 | 00.0 | 0.00 | 0.00 | 0.00 | 0.00 | | 0% 4.94 4.49 3.17 11.56 0.27 4.39 0.006 0.14 2.06 0.16 1.06 0.16 0.06 0.07 3.65 0.00 <th< td=""><td>80.0%</td><td>4.03</td><td>3.41</td><td>2.67</td><td>11.21</td><td>0.24</td><td>17</td><td>900.0</td><td>0.09</td><td>1.28</td><td>0.11</td><td>40%</td><td>36.50</td><td>0000</td><td>0.00</td><td>0.00</td><td>0.00</td><td>000</td></th<> | 80.0% | 4.03 | 3.41 | 2.67 | 11.21 | 0.24 | 17 | 900.0 | 0.09 | 1.28 | 0.11 | 40% | 36.50 | 0000 | 0.00 | 0.00 | 0.00 | 000 | | 0% 6.19 6.19 0.08 0.01 2.09 0.08 0.08 0.01 2.09 0.08 0.09 0.00 0 | 70.0% | 3 . | 4.49 | 3.17 | 11,56 | 0.27 | 1.39 | 90.00 | 0.10 | 1.68 | 0.15 | 10% | 36.50 | 0.00 | 0.00 | 0.00 | 0.00 | 000 | | 0% 8.07 7.13 4.30 12.26 0.05 0.14 3.56 0.27 10% 36.50 0.00 | 60.0% | 6.49 | 5.57 | 3,67 | 11.90 | 934 | 1,51 | 9000 | 0.11 | 2,09 | 0.48 | 10% | 36.50 | 00.0 | 0.00 | 0.00 | 0.00 | 000 | | 0% 5.88 8.98 5.03 12.63 0.40 1.79 0.006 0.14 3.36 0.27 10% 36.50 0.00 0.10 0.00 0.01 0.68 12.38 12.38 13.02 0.44 1381 0.006 0.16 4.17 0.22 10% 36.50 0.00 0.10 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.02 <t< td=""><td>50.0%</td><td>8.07</td><td>7.43</td><td>4,30</td><td>12.25</td><td>0.35</td><td>1.64</td><td>900'0</td><td>0.13</td><td>797</td><td>0.22</td><td>10%</td><td>36.50</td><td>00'0</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></t<> | 50.0% | 8.07 | 7.43 | 4,30 | 12.25 | 0.35 | 1.64 | 900'0 | 0.13 | 797 | 0.22 | 10% |
36.50 | 00'0 | 0.00 | 0.00 | 0.00 | 0.00 | | 0% 12.38 11.13 5.78 13.02 0.44 1.97 0.006 0.16 4.17 0.32 10% 36.50 0.00 0.10 0.00 0.01 0% 16.07 14.23 6.81 13.55 0.50 2.08 0.006 0.21 7.18 0.50 10% 36.50 0.00 0.40 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 | 40.0% | 88.6 | 8.98 | 5.03 | 12.63 | 0.40 | 4.2 | 9000 | 0.14 | 85.
85. | 0.27 | 10% | 36,50 | 00.0 | 0.40 | 0.00 | 6.04 | 6.0 1 | | 0% 16.67 14.23 6.81 13.55 0.50 2.06 0.78 10.78 36.50 0.00 0.40 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 | 30.0% | 12.38 | 11.13 | 5.78 | 13,02 | 9.4 | 95 | 900'0 | 0,15 | 4.17 | 0.22 | 10% | 36,50 | 0.00 | 0,10 | 0,00 | 0.01 | 0.01 | | 0% 22.26 19.17 8.32 14.24 0.68 2.30 0.00 10.26 0.00 10.02 0.69 0.20 10.02 0.69 0.26 10.02 0.67 5% 18.25 0.90 0.40 0.02 0.00 0% 34.22 33.08 11.34 16.40 0.78 2.77 0.006 0.28 12.39 0.80 17.8 3.65 1.70 0.40 0.02 0.01 0% 40.48 37.70 13.03 16.32 2.89 0.006 0.30 14.1 0.90 1% 3.65 2.20 0.00 0.01 0.00 0.00 1% 3.65 2.29 0.00 0.01 1% 3.65 2.20 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 1.7 1.83 2.80 2.80 0.01 0.01 0 | 20,0% | 16.07 | 14.23 | 8 | 13.55 | 0.50 | 2.08 | 9000 | 6.13 | 5,33 | 82,0 | 10% | 36.50 | 000 | 0,10 | 0.00 | 0.01 | 0.04 | | 0% 34,22 26,75 10,38 14,34 0.69 2.57 0.00 0.28 10,39 1% 5% 18,25 0.90 0.40 0.65 0.02 0.00 0.28 12,39 0.80 1% 3.65 1.70 0.65 0.02 0.01 0.01 0.02 1.23 0.80 1% 3.65 1.70 0.65 0.01 0.01 0.02 1.41 0.90 1% 3.65 1.70 0.65 0.01 0.01 0.02 0.01 0.01 0.02 1.41 0.90 1% 3.65 2.20 0.90 0.01 0.02 0.01 0.01 0.02 1.41 0.02 1.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 1.02 1.02 0.01 0.02 0.02 0.01 0.01 0.02 1.02 1.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 </td <td>10.0%</td> <td>22.26</td> <td>19,17</td> <td>8,32</td> <td>14.24</td> <td>0,58</td> <td>2,30</td> <td>9000</td> <td>0.21</td> <td>7.18</td> <td>0.50</td> <td>40%</td> <td>36.50</td> <td>8,</td> <td>0.20</td> <td>40:0</td> <td>0,02</td> <td>90'0</td> | 10.0% | 22.26 | 19,17 | 8,32 | 14.24 | 0,58 | 2,30 | 9000 | 0.21 | 7.18 | 0.50 | 40% | 36.50 | 8, | 0.20 | 40:0 | 0,02 | 90'0 | | 0% 40.48 37.70 13.03 16.72 0.83 2.89 0.006 0.30 14.11 0.90 1% 3.65 2.20 0.90 0.02 0.01 0.01 0.% 55.23 46.36 14.38 16.32 0.92 3.09 0.01 0.33 17.36 1.06 1% 3.65 2.20 0.90 0.02 0.01 0.02 0.01 0.02 0.01 0.03 17.36 1.06 1.06 0.31 17.36 1.06 1.06 0.03 1.00 0.02 0.01 0.01 0.01 0.01 0.01 0.01 | 20% | 34.23 | 26.75 | 10.38 | 14.94 | 0.69 | 2.57 | 0.006 | 0.25 | 10.02 | 0.67 | 26 | 18.25 | 06'0 | 0,40 | 0.05 | 0.02 | 20.0 | | 0% 40.48 37.70 13.03 15.72 0.83 2.89 0.006 0.30 14.11 0.30 1% 3.65 2.20 0.90 0.00 0.01 0.33 17.36 1.06 1% 3.65 3.50 1.60 0.04 0.02 5% 62.74 57.49 19.31 22.46 0.86 2.98 0.006 0.31 24.52 0.96 1.83 2.80 1.60 0.01 0.01 6% 72.46 0.86 2.98 0.006 0.31 24.52 0.96 1.83 2.80 1.60 0.01 0.01 0% 78.46 0.06 0.31 24.52 0.96 1.43 2.80 0.02 0.01 0% 78.46 0.86 2.38 0.06 0.34 26.56 1.43 1.83 3.90 2.80 0.01 1 78.46 1.83 2.36 2.40 2.40 2.60 47.55 2.60 2.80 2.20 | 4.0% | 34.92 | 33.08 | 1 | 15.40 | 0.78 | 2.77 | 900'0 | 0.28 | 12,39 | 0.30 | 1% | 3.65 | £.78 | 9.6 | 0.02 | 0.01 | 0.03 | | 0% 52.23 46.36 14.98 16.32 0.92 3.09 0.01 0.33 17.36 1.06 1% 3.65 3.50 1.60 0.04 0.02 6% 62.74 57.49 19.31 22.46 0.86 2.86 6.006 0.31 21.52 0.96 1.83 26.56 1.83 2.80 1.60 0.01 0% 78.45 78.46 0.95 3.48 0.01 0.34 26.56 1.43 1.83 2.80 6.00 0.01 0% 78.46 1.83 1.83 3.90 2.80 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0 | 3,0% | 40.48 | 37.70 | සය | 15.72 | 0.83 | 2.89 | 9000 | 0.30 | 14,11 | 06.0 | * | 3,65 | 2.20 | 0.90 | 0.02 | 0.01 | 0.03 | | 6% 62.74 57.49 19.31 22.46 0.86 2.98 0.006 0.31 21.52 0.96 1% 1.83 2.60 1.60 0.01 0.01 0.01 0.01 0.01 0.01 0 | 2.0% | 52.23 | 46.36 | 14.99 | 16.32 | 0.92 | 3.09 | 0.01 | 0.33 | 17.36 | 4.06 | | 3,65 | 3,50 | 1,60 | 0.04 | 0.02 | 0.06 | | 0% 79.16 70.95 23.41 0.05 3.18 0.01 26.56 1.13 1% 1.83 3.90 2.80 0.02 0.01 Total annual sediment yield (bertload and supported | 15% | 62.74 | 57.49 | 19.34 | 22.46 | 0.86 | 2.98 | 6.006 | 0.34 | 24.52 | 96.0 | 1% | 1.83 | 2.60 | 1,60 | 0.01 | 0.01 | 0,02 | | Total annual sediment yield (betthad and superoded 73.0 47.5 sand bed-material load) (tons/yt): Upstream total annual sediment supply 76.0 51.0 bifference in sediment transport capacity (tons/yt) (Worksheet 5-12a) (supply 76.0 51.0 bifference in sediment transport capacity (tons/yt) (+ cr -): Stability evaluation: Degradation or Stability evaluation: Degradation or Stability | 40% | 79.45 | 70.95 | 22.29 | 23.41 | 0.95 | 3.48 | 0.01 | 0.34 | 36.56 | 1.13 | * | 1.83 | 3.30 | 2.80 | 0.02 | 0.01 | 0.03 | | total arrural sediments upply 76.0 51.0 (tors/x) (Worksheet 5-12a) 76.0 51.0 13 ediment transport capacity 3.0 3.0 3.6 (tors/x) (+ cr -): (tors/x) (+ cr -): Stable: | Nde: | U | -00 | | | | | | | | Total enm | sal sedimer | it yield (bec
and bed-mo | load ands
ite ial load) | (tons/y): | 73.0 | 47.5 | 120.5 | | Aggradation, Degradation or Stable: | | | | | | | | | | | | Upstre | am total an
(tors/yr) | Nual sedimi
(Workshe | entsupply
et 5-12a): | 76.0 | 51.0 | 127.0 | | | | | | | | | | | | | | Diffeenc | a in sedima | ant trenspoa
(tons (yri) | tospacity
(+ or - }; | 3.0 | 3.6 | 9'9 | | | | | | | | | | | | | | ty evaluatic | | ation, Degr. | Stable: | | | | Copyright @ 2005 Wildland Hydrology RB Worksheet 5-10. Summary form of annual streambank erosion estimates for various study reaches. | Stream: N | lacgruder Day | / 3, Reach - R | each 1 | Location | : | | ····· | | |--|--|---|--|--------------------------|----------------------------------|--------------|--|--------| | Graph Used: | | Total Bai | nk Length (ft): | 242 | | Date: | 9/26/2007 | | | Observers: | | | Valley Type: | | | Stream Type: | | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | | | Station (ft) | BEHI rating
(Worksheet
5-8)
(adjective) | NBS rating
(Worksheet
5-9)
(adjective) | Bank
erosion
rate (Figure
5-38 or 5-
39) (ft/yr) | Length of
bank (ft) | Study bank | | Erosion
Rate
(tons/yr/ft)
{[(7)/27] ×
1.3 / (5)} | | | 1. RB 201-209 | Moderate | Low | 0.1084821 | 8 | 2.8 | 2.43 | 0.01 | | | 2. RB 225-240 | Low | Moderate | 0.09 | 15 | 1.6 | 2.16 | 0.01 | | | Station 006 -
3. 02 5 R | Low | Extreme | 1.9986418 | 19 | 3.1 | 117.72 | 0.30 | | | Station 025 -
4. 029 R
Station 029 - | Moderate | Extreme | 2.0039063 | 4 | 3.2 | 25.65k# | 0.31 | | | 5. 039 R
Station 045- | High | Low | 1.9996875 | 10 | 3.2 | 63.99 | 0.31 | | | 6. 048 rb
Station 048- | High | Low | 0.1928571 | 3 | 2.8 | 1,62 | 0.03 | ē | | 7. 063 rb
Station 063- | High | Very Low | 0.2290909 | 15 | 2.2 | 7.56 | 0.02 | | | 8. 072rb
Station 099- | High | Low | 0.4 | 99 | 3.3 | 11.88 | 0.06 | 9 | | 9. 111rb
Station 111- | Moderate | Low | 0.0964286 | 12 | 2.1 | 2.43 | 0.01 | ē | | 10. 122 rb | Moderate | Low | 0.0954545 | 11 | 1.8 | 1.89 | 0.01 | | | 14. | | | | | gramman (sec) 2
E | | |)
V | | 1 2. | Kili is Williams | | | | | | | Ģ | | 13. | | elines da culta a precore por se
Estados | | | | | TE IVETI | | | 14. | Su Sille di Chiana da deservici | | | en roj governo sporo a | epop pagenta and the con- | | | RB | | IS | | | (ax 727) | | Total | 4 1 X | | To | | Sum erosion su | btotals in Colu | mn (7) for eac | h BEHI/NBS (| combination | erosion
(ft³/yr)
Total | 237.33 | | 3 | | Convert erosion | in ft ³ /yr to yds | ³ /yr {divide To | otal erosion (ft | ³ /yr) by 27} | erosion
(yds³/yr) | 8,79 | | | | Convert erosion by 1.3} | in yds ³ /yr to to | ons/yr (multipl | y Total erosio | n (yds³/yr) | Total
erosion
(tons/yr) | 11.43 | | | | Calculate erosic (tons/yr) by total | | | | erosion | Total
erosion
(tons/yr/ft) | 0.0472 | | ,0 | Worksheet 5-10. Summary form of annual streambank erosion estimates for various study reaches. | Stream: N | lacgruder Day | / 3, Reach - L | EFT BANK B | I Location | : | | | |--|--|---|--|--------------------------|---|-------------|--| | Graph Used: | | Total Ba | nk Length (ft): | 242 | | Date | 12/30/1999 | | Observers: | | | Valley Type: | | | Stream Type | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | T (8) | | Station (ft) | BEHI rating
(Worksheet
5-8)
(adjective) | NBS rating
(Worksheet
5-9)
(adjective) | Bank
erosion
rate (Figure
5-38 or 5-
39) (ft/yr) | Length of
bank (ft) | Study bank
height (ft) | | Erosion
Rate
(tons/yr/ft)
{[(7)/27] ×
1.3 / (5)} | | GLIDE X-
1 SECT. 229 | | Low | 0
0 | HASE SECTION . | 1.6 | 0 | 0.00 | | 2. LB 220 | Low | Moderate | 0.10125 | 8 | 3 | 2.43 | 0.01 | | 3. LB 66-41 | Moderate | Low | 0.108 | 25 | 1.6 | 4.32 | 0.01 | | 4. LB 80-66 | High | Very Low | 0.2268908 |
14 | 1.7 | 5.4 | 0.02 | | 5. LB146-132 | High | Very Low | 0.2285714 | 14 | 2.7 | 8.64 | 0.03 | | 6. LB157-146 | Moderate | Low | 0.1 | 11 | 2.7 | 2.97 | 0.01 | | 7. LB168-157 | High | Low | 0.2045455 | 14 | 1.2 | 2.7 | 0.01 | | 8. LB195-206 | Moderate | Low | 0.1125 | 16 | 2.7 | 4.86 | 0.01 | | 9. LB204-214 | High | Extreme | 1.4989967 | 23 | 2.6 | 89.64 | 0.19 | | 0. Pool XS032
RIFFLE X- | Extreme | Extreme | 3.96 | 1 | 3 | 11.88 | 0.57 | | 1. SEC 136,25 | High | Very Low | 0.216 | To real experiences in | 2.5 | 0.54 | 0.03 | | 2. | | | 12 -41-475 | | | | | | 3 | | | lidaji wax | (W, ma, <u>uu-</u> | | | | | 4. | | | | | | | | | 5.
Sum erosion su | btotals in Colu | mn (7) for eac | h BEHI/NBS d | combination | Total
erosion | | | | Convert erosion | in ft³/yr to yds | ³ /yr {divide To | otal erosion (ft | ³ /yr) by 27} | (ft ³ /yr)
Total
erosion
(yds ³ /yr) | 133.38 | | | Convert erosion by 1.3} | in yds ³ /yr to to | ons/yr (multip! | y Total erosio | n (yds³/yr) | Total
erosion
(tons/yr) | 6.42 | | | Calculate erosio
(tons/yr) by total | | | | erosion | Total
erosion
(tons/yr/ft) | 0.0265 | | 3rd Field Day #### a. Riparian Vegetation Worksheet C-4. Riparian vegetation composition/density used for channel stability assessment. | | SSITIETAL. | | Dinasias Va | AND THE PROPERTY OF THE | Samuel Color | |--------------------|--|----------------------------|----------------------------|--|--------------------------------------| | | 41 | | Riparian Ve | egetation | | | Stre | Magner
Dam: | | | Location: Reach | / | | Obs | servers: Teen | 1 | Reference reach | Disturbed (impacted reach) Date: | 9 25/07 | | Exis
spe
con | cies Julip Per
position: Mixeu | ler Donnina
Riporten Ho | reduced | Potential BAK-HALA
species
composition: MIKE HAM | | | | iparian cover
categories | Percent aerial cover* | Percent of site coverage** | Species composition | Percent of total species composition | | 1. Overstory | Canopy layer | 95 | 10 | Tuliptopbe
MAPLE Maple
Sycamore
Association | #0 75
20
% 25
2.5 | | | | | | | 100% | | 2. Understory | Shrub layer | | 25 | elultitlerakeise
Spice Bush
Aluete
Var berry
Issan Wood
Service borry | 10
b0
5
20 | | | | | | | 100% | | levei | Herbaceous | | 40
35 | Tapsnese Hiltyass
Clear Weed
Plantain
Crolden Rod
Honey snell
Roar Feen | 60
5
5
5 | | 3. Ground level | Leaf or needle
litter | | 20 | Remarks: Condition, vigor and/or usage of existing reach: | 100% | | | Bare ground | | 10 | | | | | d on crown closure.
ed on basal area to | surface area. | Column total = 100% | | | 3rd Field Day ### b. Flow Regime **Worksheet C-5.** Flow Regime variables that influence channel characteristics, sediment regime and biological interpretations. | | | | FLOW | REGIN | ΛE | | | | | |------------|---|--------------|-------------|-------------|---------------|-------------|------------|----------|------------| | Stream: | <u></u> | | Location | n: | | | 1 | | | | Observers: | | | | | | | Date: | | | | | COMBINATIONS that | P2 | P8 | | | | | | | | General (| Category | | | | | | | , III | 3 | | Έ, | Ephemeral stream cha
with intermittent. | | | | | | | | | | S | Subterranean stream surface flow that follow | | | allel to an | nd near the | surface f | or various | seasons | s - a sub- | | · • | Intermittent stream ch
involve springs, snowr
reappear along variou | nelt, artifi | icial contr | ols, etc. (| Often this to | erm is as | | | | | Р | Perennial stream char | nels: su | rface wat | er persist | s yearlong. | | | | | | Specific (| Category | | | | | ال الله عرب | | | | | 1 | Seasonal variation in s | treamflo | w domina | ted prima | rily by sno | vmelt run | off. | | - | | 2. | Seasonal variation in s | treamflo | w domina | ted prima | rily by stori | mflow run | off. | | | | 3 | Uniform stage and ass | ociated s | streamflov | v due to s | pring-fed o | ondition, | backwate | er, etc. | | | 4 | Streamflow regulated | by glacial | melt. | | ш. | | | | | | 5 | Ice flows/ice torrents for | om ice d | am breac | hes. | | | 44.1 | | | | 6 | Alternating flow/backw | ater due | to tidal in | fluence. | | - | | | | | 7 | Regulated streamflow | due to di | versions, | dam rele | ase, dewat | ering, etc | | | | | 8 | Altered due to develop
conversions (forested | | | | | | | | | | 9 | Rain-on-snow generate | ed runoff | | | | | | | | 3rd Field Day #### c. Stream Size and Order Worksheet C-6. Stream size/order categories for stratification by stream type. | | Stream Siz | e and Order | | |----------------------|----------------|-----------------|--------------------------| | Stream: | | | | | Location: | | | | | Observers: | | | | | | | | | | Date:
Stream Size | e Category and | l Order 🤝 | 54(2) | | Category | STREAM SIZ | dth | Check (🗸)
appropriate | | | meters | feet 🦠 | category | | S-1 | 0.305 | <1 | | | S-2 | 0.3 – 1.5 | 1 – 5 | | | S-3 | 1.5 - 4.6 | 5 - 15 | | | S-4 | 4.6 - 9 | 15 – 30 | P | | S-5 | 9 – 15 | 30 – 50 | 13 | | S-6 | 15 – 22.8 | 50 – 75 | | | S-7 | 22.8 - 30.5 | 75 – 100 | | | S-8 | 30.5 – 46 | 100 – 150 | | | S-9 | 46 – 76 | 150 – 250 | | | S-10 | 76 – 107 | 250 – 350 | | | S-11 | 107 – 150 | 350 – 500 | П | | S-12 | 150 – 305 | 500 – 1000 | | | S-13 | >305 | >1000 | . [] | | | Stream | n Order | | reach. For example a third order stream with a bankfull width of 6.1 meters (20 feet) would be indexed as: S-4(3). Add categories in parenthesis for specific stream order of 3rd Field Day #### d. Meander Patterns Worksheet C-7. Meander pattern relations used for interpretations for river stability. 3rd Field Day #### e. Depositional Patterns Worksheet C-8. Depositional patterns used for stability assessment interpretations. 3rd Field Day # f. Channel Blockages Worksheet C-9. Various categories of in-channel debris, dams and/or channel blockages used to evaluate channel stability. | | 英国新疆 | Channel Blockages, | | |------------|---------------------------|--|--| | Strea | m: | Location: | The same of sa | | Obse | rvers: | Date: | | | Desc | ription/extent | Materials, which upon placement into the active channel or flood-
prone area, may cause adjustments in channel dimensions or
conditions due to influences on the existing flow regime. | Check (//)
all that
apply | | D1 | None | Minor amounts of small, floatable material. | E | |) 2 | nfrequent | Debris consists of small, easily moved, floatable material, e.g., leaves, needles, small limbs and twigs. | С | | D3 | Moderate | Increasing frequency of small- to medium-sized material, such as large limbs, branches and small logs, that when accumulated, affect 10% or less of the active channel cross-section area. | ~ | | D4 | Numerous | Significant build-up of medium- to large-sized materials, e.g., large limbs, branches, small logs or portions of trees that may occupy 10–30% of the active channel cross-section area. | k j | | D5 | Extensive | Debris "dams" of predominantly larger materials, e.g., branches, logs and trees, occupying 30–50% of the active channel cross-section area, often extending across the width of the active channel. | Ē | | D6 | Dominating | Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section
area. Such accumulations may divert water into the flood-prone areas and form fish migration barriers, even when flows are at less than bankfull. | | | D 7 | Beaver dams:
Few | An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. | | | D8. | Beaver dams:
Frequent | Frequency of dams is such that backwater conditions exist for channel reaches between structures where streamflow velocities are reduced and channel dimensions or conditions are influenced. | G | | D9 | Beaver dams:
Abandoned | Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments, such as bank erosion, lateral migration, avuision, aggradation and degradation. | | | D10 | Human
influences | Structures, facilities or materials related to land uses or development located within the flood-prone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures and various transportation encroachments that have an influence on the existing flow regime, such that significant channel adjustments occur. | □ | 3rd Field Day #### g. Degree of Channel Incision (Bank-Height Ratio) Worksheet C-10. Relationship of Bank-Height Ratio (BHR) ranges to corresponding stream stability ratings to determine degree of channel incision. 3rd Field Day #### i. Width/Depth Ratio State Worksheet C-12. Width/depth ratio state stability rating. 3rd Field Day #### j. Degree of Channel Confinement (Meander Width Ratio (MWR)) Worksheet C-13. Degree of confinement stability ratings based on meander width ratio divided by reference meander width ratio. 3rd Field Day **Worksheet C-19.** Stability ratings for corresponding successional stage shifts of stream types. Check (✓) the appropriate stability rating. | Stream: | Stream Type: | |---|---| | Location: | Valley Type: | | Observers: | Date: | | Stream type changes due to successional stage shifts (Figure C-5) | Stability rating (check appropriate rating) | | Stream type at potential, $(C \rightarrow E)$, $(F_b \rightarrow B)$, $(G \rightarrow B)$, $(F \rightarrow B_c)$, $(F \rightarrow C)$, $(D \rightarrow C)$ | Stable | | c-wider c | Moderately unstable | | (G→F), (F→D), (C→F) | Unstable | | (C→D), (B→G), (D→G), (C→G), (E→G) | Highly unstable | 3rd Field Day #### Worksheet C-20. Lateral stability prediction summary. | Stream: | | | Stream T | уре: | | |--|------------------------------------|-----------------------------|---|--|--| | Location: | | | Valley T | уре: | | | Observers: | | | D | ate: | | | Lateral stability criteria | | Lateral stabili | ty categories | | Selected | | (choose one stability
category for each
criterion 1–5) | Stable | Moderately
unstable | Unstable | Highly
unstable | points
(from
each row) | | W/d ratio state (Worksheet C-12) | < 1.2 | 1.2 – 1.4 | 1.4 – 1.6 | > 1.6 | 2 | | | (2) | (4) | (6) | (8) | | | Depositional pattern (Worksheet C-8) | B1, B2 | B4, B8 | . Вз | B5 B6, B7 | 4 | | <u> </u> | (1) | (2) | (3) | . (4) | | | Meander pattern (Worksheet C-7) | M1 (V3)V/4 | | /12, M5, M6,
M7, M8 | | 7 | | · | (1) | | (3) | | 1 | | Dominant BEHI / NBS (Worksheet C-16) | L/VL, L/L, L/M,
L/H, L/VH, M/VL | ML MM, MH,
L/Ex, H/L | MVH, MEx,
H/L, H/M, H/H,
VH/VL, Ex/VL | H/H, H/Ex, Ex/M,
Ex/H, Ex/VH,
VH/VH, Ex/Ex | 4 | | . The second was a second | (2) | (4) | (6) | (8) | | | Degree of
confinement (MWR /
MWR _{ref}) (Worksheet C- | 0.8 1.0 | 0.3 – 0.79 | 0.1 – 0.29 | < 0.1 | 3 | | 13) | (1) | (2) | (3) | (4) | ger eine die er einer eine
Lieuwitz | | History of the control contro | | | | Total points | X | | | Lat | eral stability ca | itegory point r | inge | · · · · · · | | Overall lateral stability category (use total points and check stability rating) | Stable
7 – 9 | Moderately unstable 10 – 12 | Unstable
13 – 21 | Highly unstable | | 20.0 River Assessment and Monitoring: Impaired Reach Worksheet C-18. Sediment competence calculation form to assess bed stability. | Stream: | Macq | ruder | Stream Type: | | | | | | | | | | |---|-------------------------------------|---|-------------------------------|-------------------------|--------------------------|--|--|--|--|--|--|--| | Location: | J | | Valley Type: | | | | | | | | | | | Observers: | | | Date: | 9/26 | .107 | | | | | | | | | Enter rec | uired info | rmation | | | | | | | | | | | | 34:29 | D ₅₀ | Riffle bed material D ₅₀ (mm) | e chanv | ul | | | | | | | | | | 9.4 | D ₅₀ | Bar sample D ₅₀ (mm) | | | | | | | | | | | | .23 | D _{max} | Largest particle from bar sample (ft) | 70 | (mm) | 304.8
mm/ft | | | | | | | | | ,006 | S | Existing bankfull water surface slope (ft/ft) | | | | | | | | | | | | 1.2 | d Existing bankfull mean depth (ft) | | | | | | | | | | | | | γ_s Submerged specific weight of sediment | | | | | | | | | | | | | | Select the appropriate equation and calculate critical dimensionless shear stress | | | | | | | | | | | | | | 2.2 $D_{50}/D_{50}^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$ | | | | | | | | | | | | | | 2.04 | D _{max} /D ₅₀ | Range: 1.3 – 3.0 7, 35 Use EQUATION 2 | τ* = 0.038 | 34 (D _{max} /[| O ₅₀) -0.887 | | | | | | | | | .02 | τ* | Bankfull Dimensionless Shear Stress | EQUATIO | N USED: | Dmax | | | | | | | | | Calculate | bankfull n | nean depth required for entrainment of | largest parti | cle in bar | sample | | | | | | | | | 1.30 | ď | Required bankfull mean depth (ft) | $d = \frac{\tau * \gamma}{}$ | S Dmax f+. | | | | | | | | | | | Check: | Г(Stable) | Stable, tren | d trod. | aggrading | | | | | | | | | Calculate
sample | bankfull w | rater surface slope required for entrain | ment of large | est particl | e in bar | | | | | | | | | ,006 | s | Required bankfull water surface slope (ft/ft) | $S = \frac{\tau * \gamma}{2}$ | SDmax ft. | =1.3 | | | | | | | | | | Check: | Stable □ Aggrading □ Degrading | | | | | | | | | | | | Sediment | competen | ce using dimensional shear stress | | | | | | | | | | | | .45 | Bankfull si | near stress $\tau = \gamma dS$ (ibs/ft²) (substitute hydrau | lic radius, R, w | ith mean de | epth, d) | | | | | | | | | 80 | Moveable | particle size (mm) at bankfull shear stress (Figu | ire C-4) | | | | | | | | | | | ,33 | Predicted : | shear stress required to initiate movement of D _{rr} | ax (mm) (Figur | e C-4) | | | | | | | | | | ∂,88 | Predicted : | mean depth required to initiate movement of D _{mi} | | τ
γS | | | | | | | | | | .006 | Predicted s | slope required to initiate movement of D_{max} (mm | $S = \frac{\tau}{yd}$ | | | | | | | | | | 3rd Field Day #### Worksheet C-21. Vertical stability prediction for excess deposition/aggradation. | Stream: | | | Stream Type: | | i. | | | | | | | |
--|--|--|--|--|---------------------------------|--|--|--|--|--|--|--| | Location: | •. | , | Valley Type: | | | | | | | | | | | Observers: | | | Date: | | | | | | | | | | | Vertical stability | Vertical stabil | Vertical stability categories for excess deposition / aggradation | | | | | | | | | | | | criteria (choose one
stability category for
each criterion 1–6) | No deposition | Moderate
deposition | Excess
deposition | Aggradation | Selected points (from each row) | | | | | | | | | Sediment 1 competence (Worksheet C-18) | Sufficient depth
and/or slope to
transport largest
size available | Trend toward
insufficient depth
and/or slope-
slightly
incompetent | Cannot move D ₃₅
of bed material
and/or D ₁₀₀ of
bar material | Cannot move D ₁₆ of
bed material and/or
D ₁₀₀ of bar or sub-
pavernent size | 2 | | | | | | | | | · . | (2) | (4) | (6) | (8) | | | | | | | | | | Sediment capacity (POWERSED) | Sufficient
capacity to
transport annual
load | Trend toward insufficient sediment capacity | Reduction up to
25% of annual
sediment yield of
bedload and/or
suspended | Reduction over
25% of annual
sediment yield for
bedload and/or
suspended | 4 | | | | | | | | | | (2) | (4) | (6) | , (8). | | | | | | | | | | W/d ratio state (Worksheet C-12) | 1.0 – 1.2 | 1.2 – 1.4 | 1.4 – 1.6 | >1.6 | Ż | | | | | | | | | L= | (2) | (4) | (6) | (8) | | | | | | | | | | Stream succession
4 states (Worksheet (
19) | | (E→C) | (C→High w/d C),
(B→High w/d B),
(C→F). | (C→D), (F→D) | 6 | | | | | | | | | | (2) | (4) | (6) | (8) | Bernauf Land S. | | | | | | | | | Depositional
5 patterns (Workshee
C-8) | L | B2, B4 | B3, B5 | B6, B7, B8 | 3 | | | | | | | | | 3-0) | (1) | (2) | (3) | (4) | | | | | | | | | | Debris / blockages
(Worksheet C-9) | D1, D2(D3) | D4, D7 | | *D6, D9, D10 | | | | | | | | | | | , w | (2) | (3) | (4) | | | | | | | | | | | Carrier des | 14.
24. | MUTANTAN TENEN | Total points | K, | | | | | | | | | Supplied the state of | Vertical stabi | | nt range for exces
idation | s deposition / | | | | | | | | | | Vertical stability for
excess deposition /
aggradation (use total
points and check stability
rating) | No deposition
ty 10 – 14
□ | Moderate
deposition
15 – 20 | Excess
deposition
21 – 30 | Aggradation
> 30
□ | 24 | | | | | | | | 3rd Field Day # Worksheet C-22. Vertical stability prediction for channel incision/degradation. | Stream: | : | ui. | Stream Type: | | | |--|---|--|--|--|---------------------------------| | Location: | | | Valley Type: | | | | Observers: | | | Date: | | | | Vertical stability | Vertical stabi | | | | | | criteria (choose one
stability category for
each criterion 1-5) | Not incised | Slightly incised | Moderately
incised | Degradation | Selected points (from each row) | | Sediment 1 competence (Worksheet C-18) | Does not indicate excess competence | Frend to move larger sizes than 'D ₁₀₀ of bar or > D ₈₄ of bed | D ₁₀₀ of bed
moved | Particles much
larger than D ₁₀₀
of bed moved | 2 | | | (2) | HA (4) | (6) | (8) | | | Sediment capacity (POWERSED) | Does not
indicate excess
capacity | Slight excess
energy: up to
10% increase
above reference | Excess energy
sufficient to
increase load up
to 50% of
annual load | Excess energy
transporting more
than 50% of
annual load | 2 | | | (2) | (4) | (6) | (8) | | | Degree of channel
3 incision (BHR)
(Workshet C-10) | 1.00 – 1.10 | 1.11 – 1.30 | 1.31 – 1.50 | > 1.50 | ? | | (WORSHELC-10) | (2) | (4) | (6) | (8) | | | Stream succession
4 states (Worksheets
C-19 and C-10) | Does not indicate incision or degradation | If BHR > 1.1 and
stream type has
w/d between
5–10 | If BHR > 1.1
and stream type
has w/d less
than 5 | (B→G), (C→G),
(E→G), (D→G) | 2 | | | (2) | (4) | (6) | (8) | | | Confinement (MWR 5 / MWR _{ref}) | 0.80 – 1:00 | 0.30 - 0.79 | 0.10 →0.29 | < 0.10 | 3 | | (Worksheet C-13) | (1). | (2) | (3) | (4) | e. — | | | | | | Total points | 12 | | | Vertical stab | lity category poin
degrad | | nel incision / | Mar. | | Vertical stability for
channel inclsion/
degradation (use total
points and check
stability rating) | Not incised
9 – 14 | Slightly incised | Moderately
incised
19 – 27 | Degradation
> 27 | | 3rd Field Day #### Worksheet C-23. Channel enlargement prediction summary. | Stream: | | | Stream Type: | | | | | | | | |---|--
--|-------------------------------|--|--|--|--|--|--|--| | Location: | 75. ^{75.} | | Valley Type: | | n zi | | | | | | | Observers: | to the state of th | | Date: | | | | | | | | | Channel enlargement | Channel enlargement prediction categories | | | | | | | | | | | prediction criteria
(choose one stability
category for each
criterion 1–4) | No increase | Slight increase | Moderate
Increase | Extensive | Selected
points
(from each
row) | | | | | | | Successional stage
1 shift (Worksheet C-
19) | Stream type at potential, ($C\rightarrow E$), ($F_b\rightarrow B$), ($G\rightarrow B$), ($F\rightarrow C$), ($D\rightarrow C$) | (E→C)
<i>C→</i> > <i>C</i> ~/ | (G→F), (F→D) | (C→D), (B→G),
(D→G), (C→G),
(E→G), (C→F) | 4 | | | | | | | | (2) | (4) | - (6) | (8) | | | | | | | | Lateral stability Worksneet C-20) | Stable | Moderately
unstable | Unstable | Highly unstable | 6 | | | | | | | | (2) | (4) | (6) | (8) | | | | | | | | Vertical stability excess deposition/ aggradation | No deposition | Moderate
deposition | Excess deposition | Aggradation | 40 | | | | | | | (Worksheet C-21) | (2) | (4) | (6) | (8) | 1) 4 | | | | | | | Vertical stability 4 incision/ degradation (Worksheet C-22) | Not incised | Slightly incised | Moderately incised | Degradation | 4 | | | | | | | | (2) | (4) | (6) | (8) | | | | | | | | | en e | And the second of o | | Total points | X 2 | | | | | | | š. | | Category | oint range | Accommendation | Edge Till | | | | | | | Channel enlargement prediction (use total points and check stability rating) | No increase
8 – 10 | Slight increase | Moderate
Increase
17-24 | Extensive > 24 | | | | | | | 3rd Field Day **Worksheet C-24.** Overall sediment supply rating determined from individual stability rating categories. | Stream: | | | Stream Type | <u> </u> | | | | | | |--|--|--|---------------------
--|--|--|--|--|--| | Location: | e e e e e e e e e e e e e e e e e e e | Marke to After South | Valley Type | | | | | | | | Observers: | (d 1 | | Date | | | | | | | | Overall sediment supply prediction criteria (choose corresponding points for each criterion 1–5) | Stabili | ty rating | Points | Selected points | | | | | | | | Stable | | 1 | The state of s | | | | | | | Lateral stability | Mod. unsta | ble | 2 | 10 | | | | | | | (Worksheet C-20) | Unstable | • | 3 | 1 P4 | | | | | | | | Highly unst | able | (4) | 1 ' / | | | | | | | Vertical stability | No depositi | on | 1 | | | | | | | | excess deposition/ | Mod. depos | ition | 2 | 1 6 | | | | | | | aggradation | Excess dep | osition | 3 | 1 43 | | | | | | | (Worksheet C-21) | Aggradatio | a | - 4 ¹ Bu | | | | | | | | Vertical stability | Not incised | · · · · · · · · · · · · · · · · · · · | 1 | 10 | | | | | | | channel incision/ | Slightly inc | ised | 2 | | | | | | | | degradation | Mod. incise | d | 3 | 6 | | | | | | | (Worksheet C-22) | Degradation | | 4 | | | | | | | | | No increase | 1 | 1.41 | | | | | | | | Channel enlargement 4 prediction (Worksheet | Slight incre | | | | | | | | | | C-23) | Med, increa | | | | | | | | | | | Extensive | | 4 | | | | | | | | Pfankuch channel | Good: stabl | 1 : | | | | | | | | | 5 stability (Worksheet C- | Fair: mod u | nstable | 2 | | | | | | | | 11) | | Company 12 miles | - 10 H | | | | | | | | 1 18/ T/7/11/11/7 | Poor: unsta | ble | 4 | | | | | | | | | | | | | | | | | | | And the second of o | ** ** ** ** ** ** ** ** ** ** ** ** ** | The same of the contract th | Total Points | Xo | | | | | | | | | • | | (* | | | | | | | I | Category point range | | | | | | | | | | | | Valegury (| onic range | | | | | | | | Overall sediment supply rating (use total points | Low
5 | Moderate
6 – 10 | High
11 – 15 | Very High
16 – 20 | | | | | | | and check stability rating) | Ľ | | | 10 – 20 | | | | | | River Assessment and Monitoring: Impaired Reach Worksheet C-25. Summary of stability condition categories. | | | T= | 17.5 | 1 | |------|-------------------------------------|-------------------|--------------|-------| | | Channel Dimension | Observers: | Stream: | | | Mean | Mean bankfull depth (ft): /, 4 | | | | | | Mean bankfull (ft): ヱ゚ゔ, ゆ | | | 960 | | 1 | 3, 6 Cross | Date: | | 71001 | | | Cross-section area (ft²): 28 | Stream T | Location: | | | | Width of flood-
prone area (ft): | m Type: <i>C牛</i> | | | | | (Pati | Valley Ty | | | | | benchment 7,3 | ype: \7777 | | | | | in. | ŋ | 3 1
3 | | | (Channel Source) | ĮŽ | Vertical Stability
(Degradation) | Vertical Stability (Aggradation) | | Successional Stage
Shift | Entraihment/
Competence | Sediment Capacity (POWERSED) | Bank Erosion
Summary | | | Level III Stream Stability Indices | | | | reatures | River Profile and Bed | Channel Pattern | Channel Dimension | Observers: | Stream: | |--|---|---|--|---------------|-----------------------------|---|------------------------------|--
---|---|---|---|---|---------------------------------------|--|--|--|--|---|-----------| | Circle: Low Moderate Agn Very high Remarks/causes: | Circle: No increase Slight increase Moderate increase Extensive Remarks/causes: | Circle: Not incised s।।প্রাথি beised Moderately incised Degradation Remarks/causes: | Circle: No deposition Mendagate deposition Excess deposition Aggradation Remarks/causes: | stable Remarl | Potential
state (typ | Largest particle from $\tau = 0.33$ $\tau = 0.02$ depth _{bit} : $t = 0.08$ Required Required slope _{bit} : $t = 0.08$ | | ank erosion rate: Curve used: Rei
 0.037年 (tons/yr/ft) にかり | Meander Width Reference Degree of confinement NWR / MWR M | ratio (W/D): 23 ratio (W/D _{[ref}) Q/ (W/D) / (W/D _{ref}); Stability rating: STABLE | cision
It Ratio): (, ໄ ວ໌ ໄລbility rating: | Iteam size $\mathcal{A}(2)$ Meander \mathcal{M}_3 Dep pattern(s); \mathcal{M}_3 pattern | ation The Popler Oak Hickory down myked | Remarks: Condition, vigor and/or usag |): 1.48 3.26 spacing: 58 Valley: 000 9 | ax Riffle Pool Death ratio Riffle Pool | Lm/W _{bkf} : 4.49 Rc/W _{bkf} : | Mean bankfull Mean bankfull Cross-section Width of flood- Entrenchment Cross-section width (ft): ノ, チ width (ft): 23, 6 area (ft.): 28 prome area (ft): ratio: 7,3 。 | Date: Stream Type: こ今 Valley Type: 女皿 🥫 | Location: | Copyright © 2007 Wildland Hydrology Copyright © 2007 Wildland Hydrology Worksheet C-26. Field form for documenting scour chain results and corresponding bed-elevation changes. River Assessment and Monitoring: Impaired Reach | Scenario 2 or 3. Scenario 3 or 4. Scenario 3: Sut | Scenario #1. | | le R | T | 1- | | <u>.</u> | Observers: | Ou call Halle | |---|--------------|----------|----------|----------|---------------------------------|----------------------|---------------|--------------|--| | or 3.
or 4.
Sub | io #1. | Chain #4 | Chain #2 | Chain #1 | | in. | | S: | dilic. | | yr 3. Scenario 2: Enter length of chain exposed. Scenario 3: Enter r. 4. Scenario 3: Enter elevation of bed at same station @ 2nd year Subtract 1st and 2nd year elevations to calculate net change in bed. | | 29.0 | 13.0 | 6,05 | (ft) | From cross-section | i esta lo | | , (II) | | er length of
er elevation
year elevat | Scenario #2, | 9802 | 16116 | 2 | Elevation
(ft) | s-section | ostallaulonil | | A. 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Enter length of chain exposed. Enter elevation of bed at same 2nd year elevations to calculate | , | 96 | AR | Burn | Largest
(mm) | Particles | idia (iksta) | 21 | 4 / | | Scenario 2: Enter length of chain exposed. Scenario 3: Enter le Scenario 3: Enter elevation of bed at same station @ 2nd year. Iract 1st and 2nd year elevations to calculate net change in hed | | M K | 0 | ** | 2 nd Largest
(mm) | _ | | | | | o 3; Enter le
2 2nd year. | Scenario #3 | | | | Scenario # (1–5) | | * 1 | Stream Type | | | Enter length of Junia exposed in year. Scenario 4: Enter dep | | | | | Scour
depth" (ft) | Chai | | | LOCARON. | | n exposed ther
Enter depth of | Scena | | | | Elevation ^b (ft) | | 100 | Valley Type: | | | then subsequently buried.
th of material over chain. | rio #4 | | | | Net change ^c (ft) | | ta (2nd Year | 7; | | | y buried.
chain. | Connecto | | | 4 | Largest
(mm) | Particles | | Date | | | | #5 (0) | | | | 2 nd Largest
(mm) | Particles near chain | | | | 3rd Field Day # 3. Channel Change Worksheet C-28. Summary of annual data comparisons | PVOI K | sheet C-28. Summary | THE RESIDENCE OF THE PARTY T | 0.0000000000000000000000000000000000000 | son Forn | | | | |--|-------------------------------------
--|---|--------------------------------|------------------------------------|----------|-----------------------| | Stream | : MAGRUDER | | | Reach: 1 | | | No. of the second | | Observ | : Magruder
vers: Team 1 | | Date - Year 1: | 2007 | Date - | Year 2: | | | | | Riffi |) XS . | . | IXS: | Glid | xs: | | | | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | | £ | Width _{BKF} | , 23,6 | | 15.1 | ! | 21.2 | | | Cross-section
dimensions | Mean depth _{bkf} | 1.2 | | 1.6 | ¥
1
1 | 1.3 | | | ens | Width/depth ratio | 19.8 | | 9.4 | | 26.3 | · ., | | dim | Cross-sectional Area _{bkf} | 28.01 | | 24.4 | | 272 | | | <u>ت</u> ق | Max depth _{bkf} | 1.38 | | 3.89 | | 1.79 | i | | Pebble
count | D ₃₅ (mm) | 15.08 | | 19 | 1 | 10.45 | :
1
1
1 | | | D ₅₀ (mm) | 30.44 | | 34,89 | | 18.02 | | | 9 0 | D ₈₄ (mm) | 56.04 | | 82.5 | | 40.32 | | | £ | BEHI rating | Highs.4 | aner li | Ex 42.2 | | LOW 18.4 | | | rosi | NBS rating | VL 1.9 | | Ex 1.43 | | 10W10 | | | Bank Erosion | Predicted erosion (ft/yr) | /m0
@.23 | | no tro | | MD 0.02 | | | | Measured erosion (ft/yr) | | #DAWIIII 1 | | | | V V | | | | Yearn | Your | | | Year 1 | Year 2 | | A STATE OF THE STA | d Pfankuch Channel
y Rating | 101 | | | D ₃₅ (mm) | 7.85 | | | | leight Ratio start: | 7.35 | | | D ₅₀ (mm) | 13.77 | Ш | | Point B | lar slope | 21.8 | | | D ₈₄ (mm) | 48.02 | 1
1
7
2
4 | | Riffle L | ength/Riffle Width | 037 | | | D ₁₀₀ (mm) | 70 | | | ² ool Le | ength/Riffle Width | 1.67 | | | | | | | 8 8 | S _{rii} /S | 5.54 | | 1 9 | d _{ris} /d _{bid} | 1.18 | | | | S _{run} /S | 9.97 | | Direction less
Depth Ralles | d _{run} /d _{bkf} | 1.36 | | | Dimensionless
Slope Ratios | S _p /S | 0.12 | | Sugar Sugar | d _p /d _{bkf} | 3.26 | | | S S | S _g /S | 0.078 | · · · · · | | d _g /d _{bkf} | 1.42 | |